Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2297194

ABSTRACT

Background During the COVID-19 pandemic multiple vaccines were rapidly developed and widely used throughout the world. At present there is very little information on COVID-19 vaccine interactions with primary human immune cells such as peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages and dendritic cells (moDCs). Methods Human PBMCs, macrophages and moDCs were stimulated with different COVID-19 vaccines, and the expression of interferon (IFN-λ1, IFN-α1), pro-inflammatory (IL-1β, IL-6, IL-8, IL-18, CXCL-4, CXCL-10, TNF-α) and Th1-type cytokine mRNAs (IL-2, IFN-γ) were analyzed by qPCR. In addition, the expression of vaccine induced spike (S) protein and antiviral molecules were studied in primary immune cells and in A549 lung epithelial cells. Results Adenovirus vector (Ad-vector) vaccine AZD1222 induced high levels of IFN-λ1, IFN-α1, CXCL-10, IL-6, and TNF-α mRNAs in PBMCs at early time points of stimulation while the expression of IFN-γ and IL-2 mRNA took place at later times. AZD1222 also induced IFN-λ1, CXCL-10 and IL-6 mRNA expression in monocyte-derived macrophages and DCs in a dose-dependent fashion. AZD1222 also activated the phosphorylation of IRF3 and induced MxA expression. BNT162b2 and mRNA-1273 mRNA vaccines failed to induce or induced very weak cytokine gene expression in all cell models. None of the vaccines enhanced the expression of CXCL-4. AZD1222 and mRNA-1273 vaccines induced high expression of S protein in all studied cells. Conclusions Ad-vector vaccine induces higher IFN and pro-inflammatory responses than the mRNA vaccines in human immune cells. This data shows that AZD1222 readily activates IFN and pro-inflammatory cytokine gene expression in PBMCs, macrophages and DCs, but fails to further enhance CXCL-4 mRNA expression.

2.
Front Bioeng Biotechnol ; 11: 1129111, 2023.
Article in English | MEDLINE | ID: covidwho-2305086

ABSTRACT

SARS-CoV-2 emerged at the end of 2019, and like other novel pathogens causing severe symptoms, WHO recommended heightened biosafety measures for laboratories working with the virus. The positive-stranded genomic RNA of coronaviruses has been known to be infectious since the 1970s, and overall, all experiments with the possibility of SARS-CoV-2 propagation are carried out in higher containment level laboratories. However, as SARS-CoV-2 RNA has been routinely handled in BSL-2 laboratories, the question of the true nature of RNA infectiousness has risen along with discussion of appropriate biosafety measures. Here, we studied the ability of native SARS-CoV-2 genomic RNA to produce infectious viruses when transfected into permissive cells and discussed the biosafety control measures related to these assays. In transfection assays large quantities of genomic vRNA of SARS-CoV-2 was required for a successful production of infectious viruses. However, the quantity of vRNA alone was not the only factor, and especially when the transfected RNA was derived from infected cells, even small amounts of genomic vRNA was enough for an infection. Virus replication was found to start rapidly after transfection, and infectious viruses were detected in the cell culture media at 24 h post-transfection. In addition, silica membrane-based kits were shown to be as good as traditional TRI-reagent based methods in extracting high-quality, 30 kb-long genomic vRNA. Taken together, our data indicates that all transfection experiments with samples containing genomic SARS-CoV-2 RNA should be categorized as a propagative work and the work should be conducted only in a higher containment BSL-3 laboratory.

3.
J Nanobiotechnology ; 20(1): 320, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-2254631

ABSTRACT

BACKGROUND: Nanovaccines have shown the promising potential in controlling and eradicating the threat of infectious diseases worldwide. There has been a great need in developing a versatile strategy to conveniently construct diverse types of nanovaccines and induce potent immune responses. To that end, it is critical for obtaining a potent self-adjuvant platform to assemble with different types of antigens into nanovaccines. RESULTS: In this study, we identified a new natural polysaccharide from the rhizomes of Bletilla striata (PRBS), and used this polysaccharide as a platform to construct diverse types of nanovaccines with potent self-adjuvant property. In the construction process of SARS-CoV-2 nanovaccine, PRBS molecules and RBD protein antigens were assembled into ~ 300 nm nanoparticles by hydrogen bond. For HIV nanovaccine, hydrophobic effect dominantly drove the co-assembly between PRBS molecules and Env expression plasmid into ~ 350 nm nanospheres. Importantly, PRBS can potently activate the behaviors and functions of multiple immune cells such as macrophages, B cells and dendritic cells. Depending on PRBS-mediated immune activation, these self-adjuvant nanovaccines can elicit significantly stronger antigen-specific antibody and cellular responses in vivo, in comparison with their corresponding traditional vaccine forms. Moreover, we also revealed the construction models of PRBS-based nanovaccines by analyzing multiple assembly parameters such as bond energy, bond length and interaction sites. CONCLUSIONS: PRBS, a newly-identified natural polysaccharide which can co-assemble with different types of antigens and activate multiple critical immune cells, has presented a great potential as a versatile platform to develop potent self-adjuvant nanovaccines.


Subject(s)
COVID-19 , Nanoparticles , Adjuvants, Immunologic/chemistry , COVID-19/prevention & control , Humans , Immunity , Nanoparticles/chemistry , Polysaccharides , SARS-CoV-2
4.
BMC Geriatr ; 23(1): 18, 2023 01 12.
Article in English | MEDLINE | ID: covidwho-2196067

ABSTRACT

BACKGROUND: Frailty is an age-associated state of increased vulnerability to stressors that strongly predicts poor health outcomes. Epidemiological evidence on frailty is limited during the COVID-19 pandemic, and whether frailty is associated with the risk of infection is unknown. OBJECTIVES: We derived a robust Frailty Index (FI) to measure the prevalence of frailty and its risk factors in community-dwelling older adults in Southern Switzerland (Ticino), and we explored the association between frailty and serologically confirmed SARS-CoV-2 infection. METHODS: In September 2020, we recruited a random sample of community-dwelling older adults (65 +) in the Corona Immunitas Ticino prospective cohort study (CIT) and assessed a variety of lifestyle and health characteristics. We selected 30 health-related variables, computed the Rockwood FI, and applied standard thresholds for robust (FI < 0.1), pre-frail (0.1 ≤ FI < 0.21), and frail (FI ≥ 0.21). RESULTS: Complete data for the FI was available for 660 older adults. The FI score ranged between zero (no frailty) and 0.59. The prevalence of frailty and pre-frailty were 10.3% and 48.2% respectively. The log-transformed FI score increased by age similarly in males and females, on average by 2.8% (p < 0.001) per one-year increase in age. Out of 481 participants with a valid serological test, 11.2% were seropositive to either anti-SARS-CoV-2 IgA or IgG. The frailty status and seropositivity were not statistically associated (p = 0.236). CONCLUSION: Advanced age increases the risk of frailty. The risk of COVID-19 infection in older adults may not differ by frailty status.


Subject(s)
COVID-19 , Frailty , Male , Female , Aged , Humans , Cohort Studies , Frail Elderly , Prevalence , Switzerland/epidemiology , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Frailty/diagnosis , Frailty/epidemiology , Geriatric Assessment
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1603426.v1

ABSTRACT

BackgroundNanovaccines have shown the promising potential in controlling and eradicating the threat of infectious diseases worldwide. There has been a great need in developing a versatile strategy to conveniently construct diverse types of nanovaccines and induce potent immune responses. To that end, it is critical for obtaining a potent self-adjuvant platform to assemble with different types of antigens into nanovaccines. ResultsIn this study, we identified a new natural polysaccharide from the rhizomes of Bletilla striata (PRBS), and used this polysaccharide as a platform to construct diverse types of nanovaccines with potent self-adjuvant property. In the construction process of SARS-CoV-2 nanovaccine, PRBS molecules and RBD protein antigens were assembled into ~300 nm nanoparticles by hydrogen bond. For HIV nanovaccine, hydrophobic effect dominantly drove the co-assembly between PRBS molecules and Env expression plasmid into ~350 nm nanospheres. Importantly, PRBS can potently activate the behaviors and functions of multiple immune cells such as macrophages, B cells and dendritic cells. Depending on PRBS-mediated immune activation, these self-adjuvant nanovaccines can elicit significantly stronger antigen-specific antibody and cellular responses in vivo, in comparison with their corresponding traditional vaccine forms. Moreover, we also revealed the construction models of PRBS-based nanovaccines by analyzing multiple assembly parameters such as bond energy, bond length and interaction sites.  ConclusionsPRBS, a newly-identified natural polysaccharide which can co-assemble with different types of antigens and activate multiple critical immune cells, has presented a great potential as a versatile platform to develop potent self-adjuvant nanovaccines.

6.
J Nat Prod ; 85(2): 327-336, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1655431

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 5 million deaths worldwide to date. Due to the limited therapeutic options so far available, target-based virtual screening with LC/MS support was applied to identify the novel and high-content compounds 1-4 with inhibitory effects on SARS-CoV-2 in Vero E6 cells from the plant Dryopteris wallichiana. These compounds were also evaluated against SARS-CoV-2 in Calu-3 cells and showed unambiguous inhibitory activity. The inhibition assay of targets showed that compounds 3 and 4 mainly inhibited SARS-CoV-2 3CLpro, with effective Kd values. Through docking and molecular dynamics modeling, the binding site is described, providing a comprehensive understanding of 3CLpro and interactions for 3, including hydrogen bonds, hydrophobic bonds, and the spatial occupation of the B ring. Compounds 3 and 4 represent new, potential lead compounds for the development of anti-SARS-CoV-2 drugs. This study has led to the development of a target-based virtual screening method for exploring the potency of natural products and for identifying natural bioactive compounds for possible COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Microbial Sensitivity Tests/methods , Phloroglucinol/pharmacology , SARS-CoV-2/drug effects , Terpenes/pharmacology , Chromatography, High Pressure Liquid , Chromatography, Liquid , Crystallography, X-Ray , Drug Delivery Systems , Dryopteris/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation , Molecular Structure , Virtual Reality
7.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352543

ABSTRACT

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Immunity, Innate , Lung/immunology , SARS-CoV-2/isolation & purification , Virus Replication/physiology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Cytokines/genetics , Epithelial Cells/virology , Gene Expression , Humans , Interferon Type I/genetics , Interferons/genetics , Kinetics , Lung/virology , Phylogeny , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Trypsin , Interferon Lambda
8.
BMC Infect Dis ; 21(1): 357, 2021 Apr 16.
Article in English | MEDLINE | ID: covidwho-1315854

ABSTRACT

BACKGROUND: In 2020, a new coronavirus, SARS-CoV-2, quickly spread worldwide within a few months. Although coronaviruses typically infect the upper or lower respiratory tract, the virus RNA can be detected in plasma. The risk of transmitting coronavirus via transfusion of blood products remains. As more asymptomatic infections are identified in COVID-19 cases, blood safety has become particularly important. Methylene blue (MB) photochemical technology has been proven to inactivate lipid-enveloped viruses with high efficiency and safety. The present study aimed to investigate the SARS-CoV-2 inactivation effects of MB in plasma. METHODS: The SARS-CoV-2 virus strain was isolated from Zhejiang University. The live virus was harvested from cultured VERO-E6 cells, and mixed with MB in plasma. The MB final concentrations were 0, 1, 2, and 4 µM. The "BX-1 AIDS treatment instrument" was used at room temperature, the illumination adjusted to 55,000 ± 0.5 million Lux, and the plasma was irradiated for 0, 2, 5, 10, 20, and 40 mins using light at a single wavelength of 630 nm. Virus load changes were measured using quantitative reverse transcription- PCR. RESULTS: BX-1 could effectively eliminate SARS-CoV-2 within 2 mins in plasma, and the virus titer declined to 4.5 log10 TCID50 (median tissue culture infectious dose)/mL. CONCLUSION: BX-1 is based on MB photochemical technology, which was designed to inactivate HIV-1 virus in plasma. It was proven to be safe and reliable in clinical trials of HIV treatment. In this study, we showed that BX-1 could also be applied to inactivate SARS-CoV-2. During the current outbreak, this technique it has great potential for ensuring the safety of blood transfusions, for plasma transfusion therapy in recovering patients, and for preparing inactivated vaccines.


Subject(s)
Blood Safety , COVID-19/prevention & control , COVID-19/therapy , Methylene Blue/pharmacology , SARS-CoV-2/drug effects , Virus Inactivation , Animals , Blood Transfusion , Chlorocebus aethiops , Humans , Immunization, Passive , Plasma/virology , RNA, Viral , Vero Cells , COVID-19 Serotherapy
10.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: covidwho-18570

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL